
 CONTENTS

 1 - INTRODUCTION
 2 - GETTING STARTED [Formatting, Saving, Loading,
 Erasing and Cataloguing]
 3 - CHANGING NAMES of files, discs or password
 4 - NON-MASKABLE INTERRUPT
 5 - RUN ON
 6 - 64 CHARACTER MODE
 7 - AUTO BOOT
 8 - PEEKING AND POKING THE DISC
 9 - MOVING FILES
10 - ERROR TRAPPING
11 - TRACK TO TRACK STEPPING SPEED
12 - SCREEN SAVER
13 - POWER UP COLOURS
14 - INTERRUPT ROUTINES
15 - MICRODRIVE COMMANDS
16 - PRINTER INTERFACE
17 - MACHINE CODE ACCESS
18 - DISC INTERFACE CONNECTIONS
19 - LOADING & SAVING FROM MACHINE CODE
20 - HEADER DECODER
21 - ALTERNATE DIRECTORIES
22 - CONNECTOR LAYOUT
23 - GREYSCALE COPY

1 INTRODUCTION
 The Floppyone Disc System was designed to fill the gap that
 has been left by Sinclair in the BULK storage aspect of
 personal computing. A valiant attempt was made to fill the
 gap using the microdrives, but unfortunately the speed and
 reliability of these devices has proved to be a greater
 disadvantage than the advantages of the low price.
 This booklet will explain the operation of a relatively
 sophisticated, easy to use and above all reliable disc
 system.
 Programming hints will be found at the appropriate sections
 of the booklet along with useful little programs to help both
 the experienced and the inexperienced user.
 This system will be found to be most reliable when used with
 a modern disc drive. It is often false economy to purchase an
 old second hand drive from someone as you will not know the
 true condition of the drive and also servicing may be a
 problem if the drive should need alignment or replacement
 parts. Also as the system is a DOUBLE DENSITY system certain
 older drives, manufactured when only single density was in
 use may give unsurmountable reliability problems.

 Before going any further one word of warning must be given:

 ****** BACKUPS MUST BE MADE ******

 It is indeed false economy to think that backups merely cost
 unnecessary money and time. A system crash can destroy months
 of hard work in less than 1/2 a second. Or the cat could
 knock a cup of coffee over a disc you have been working on
 with disasterous results.
 THERE IS NO SUBSTITUTE FOR A BACKUP

 It is not always necessary to make your backups to disc, as
 you will see under the section on MOVING files

2 GETTING STARTED

 2.1 CONNECTING UP THE SYSTEM
 a. Make sure that ALL the power is turned off before
 starting.
 b. Plug the DOS board into the back of the Spectrum or the
 Interface One if you have it.
 c. Connect the disc drive cable to the DOS board with the
 arrow on the connector uppermost.
 d. Making sure that there is no disc in the drive, turn on
 the power to the disc drive.
 e. If the red light on the drive comes on continuously, then
 you probably have the cable to the interface the wrong way
 round. Repeat from step (a) but with the cable the other way
 round.
 f. Now make sure that the switch to enable the DOS board is
 down, and if you have an Interface One then make sure the
 Interface One switch is also down. IF YOU HAVE AN INTERFACE
 ONE CONNECTED, THEN THIS SWITCH MUST BE DOWN AT ALL TIMES !!!
 g. Turn on the Spectrum, the drive(s) you have connected
 will now start up one at a time and as the computer
 recognises each drive it will put it up on the screen. If no
 drives are connected then 'Drives = NIL' will be displayed
 and instead of the usual Sinclair copyright message you will
 get - No Drive, 0:1
 h. If the display shows the appropriate number of drives
 connected then all is well and you will want to continue to
 FORMAT your fist disc.

 2.2 Formatting

 Before you can save or load programs you have to format the
 disc that you wish to use. This is so that the computer will

 know where to put the information on the disc.
 Before you can format the disc you must also know the
 specifications of your disc drive, for instance is it double
 sided and does it have 40 or 80 tracks.
 Note that with this system it is possible to mix any
 combination of disc/drive types and that unlike some systems,
 double sided drives are treated as two separate drives.
 The command to format a disc is :

 !FORMAT "discname";"password";number of tracks

 where the discname and password must be strings of between 1
 and 10 characters in length, and the number of tracks must be
 less than or equal to the number of tracks that the drive can
 handle.
 In all of the commands any Sinclair Basic string form could
 be used where a string is required and similarly any numeric
 variable could be used when a number is required.
 A typical example of this is :

 10 LET a$="Test":LET b$="bat":LET a=40
 20!FORMAT a$;b$;a

 This will format a disc with the name 'Test', the password
 will be 'bat' and it will be formatted to a size of 40
 tracks, which will give a usable capacity of 192 kilobytes.
 The capacity of the disc can be calculated from the formula
 (5*(number of tracks))-8, so a disc formatted to 80 tracks
 will in fact give 392 kilobytes.

 HINT- Many disc drives will allow you to format the disc to 2
 or 3 tracks more than the nominal amount, giving 10 to 15
 kilobytes more storage. This is because the manufacturers
 have had to allow for manufacturing tolerances in their parts
 so that the read/write head can actually move further along
 the disc than the nominal 40/80 tracks, giving typically 202
 kb for 42 tracks or 402 kb for 82 tracks.

 2.3 The password
 The need to enter the password can be avoided if the
 password is made equal to, or starts with CHR$ 0, i.e. you
 can format a disc with the following command so that it is
 not necessary to enter a password :
 !FORMAT "Test";CHR$ 0;40 , the disc formatted using this
 command will not require a password to be input when in use.
 Discs can not be formatted if they have already been
 formatted unless the password is known, as you will be asked
 for the password of the disc that you wish to format if it
 has one. A new disc obviously does not have a password, so
 there is no problem there, and if it has CHR$ 0 as a password
 you also won't be asked for a password.
 For more details on the password see section 3.

 2.4 PRODUCING A CATALOGUE OF THE DISC
 There are a number of ways of producing a catalogue of the
 disc.
 a. Let's first deal with the standard DOS method:-
 !CAT will produce, on the screen, a directory of the disc. On
 the top line of the directory you will see the name of the
 disc, followed by the number of the current drive.
 Below this will follow the type of file, name of the file
 and the extent (size) of the file in kilobytes.
 After all the files (if any!) have been printed to the
 screen, the storage capacity remaining on the disc will be
 displayed, followed by the number of directory writes that
 have occurred since the disc was last formatted. This can in
 fact give an indication of the condition of the disc, as it
 gives a record of how many times the disc has been accessed
 for saving or changing an entry in the directory, which can
 give an indication of the amount of use the disc has had.
 Following this is the number of tracks that the disc was
 formatted to.
 Then there are the statuses of two system flags that you
 will find quite useful as you progress with the system.

 b. Then there are a number of forms that are available to NON
 microdrive/interface one users. In other words if you have an
 Interface One connected these commands will NOT work!
 CAT will do the same as !CAT
 CAT drive number +1 will catalogue the drive number
 specified minus one AND change to that drive as the current
 drive. i.e. CAT 1 will catalogue drive 0 and change it to the
 current drive. The reason for the difference is that
 Sinclair chose to start his drive numbering with one, whereas
 the DOS starts with drive 0.
 CAT #stream,drive number +1 will send the catalogue of the
 selected drive to the specified stream. For example
 CAT #3,1 will send the directory of drive 0 to the printer.
 NOTE that all of the CAT commands that specify a drive number
 will change the current drive number to that number.

 2.5 Changing the current drive
 The current drive can be changed by using the DOS command:
 !d=drive number The 'd' can be upper or lower case.

 2.6 SAVING
 Normal saving from BASIC takes place in the same way for the
 DOS as it does for tape.
 So all of the following will work:

 SAVE "name" to save a program
 SAVE "name" LINE number to auto run the program
 SAVE "name"CODE start,length to save bytes
 SAVE "name"SCREEN$ to save a screen
 SAVE "name"DATA a() to save a numeric array

 SAVE "name"DATA a$() to save a string array

 In the last two, a and a$ are merely examples, any other
 array names could be used.

 For NON Interface One users, the microdrive format can be
 used to save programs/bytes/data using the following format:

 SAVE *"m";1;"name"

 to save a program called name to drive 0. Again note that
 the drive to which the program is saved, is the drive number
 specified minus one.

 2.7 LOADING
 Loading takes place in much the same way that saving takes
 place as far as the user is concerned, since again the load
 commands are identical to their tape counterparts.
 The following are available:

 LOAD "name" to load a program
 LOAD "name"CODE to load bytes
 LOAD "name"SCREEN$ to load a screen
 LOAD "name"DATA a() to load a numeric array
 LOAD "name"DATA a$() to load a string array

 In the last two, a and a$ are merely examples, any other
 array names could be used.
 For NON Interface One users, the microdrive format can be
 used to load programs/bytes/data using the following format:

 LOAD *"m";1;"name"

 to load a program called name from drive 0. Again note that
 the drive from which the program is loaded is the drive
 number specified minus one.

 2.8 ERASING FILES
 There are two main forms of this command:
 a. Erasing a file directly by using its name.

 !ERASE "name" to erase a program
 !ERASE "name"CODE to erase bytes
 !ERASE "name"DATA to erase a numeric array
 !ERASE "name"DATA $ to erase a string array

 b. Implied erasing.
 You will already have seen in the directory listing the
 following line :- Erase flag = 0

 This means that if you have a program on the disc called
 'name' and you save another one also called 'name', you will
 have 2 programs on the disc called 'name'. However, if you
 had used the command !ERASE 1 , then the erase flag would

 have been set to 1, and saving the second program as 'name'
 would have AUTOMATICALLY erased the first one. This can be
 quite useful. !ERASE 0 will turn off the auto erase flag.

 For NON Interface One users, the microdrive format can be
 used to erase programs/bytes/data using the following format:

 ERASE "m";1;"name"

 To erase a program called name from drive 0. Again note that
 the drive from which the program is erased is the drive
 number specified minus one. Also note that in this case,
 unlike loading and saving, there is no need for the
 qualifiers CODE/DATA, as the first entry in the directory
 with the specified name, will be erased regardless of the
 type.

3 CHANGING NAMES

 3.1 Changing names of files
 Very often you will want to change the name of the program
 or code that you have saved to the disc, to make it shorter
 or more recognisable. Sometimes you might even want to change
 the name of a 'run' program to prevent the auto-run after a
 reset or power-up.
 The basic form of the command is

 !"oldname" TO "newname" .

 The 'TO' is the keyword 'TO', symbol shift F.

 This form of the command was adopted to minimise the amount
 of typing in command mode. However, it does cause a problem
 when trying to use strings to change the name. It is
 necessary to concatenate the nul string with the string
 desired. The following example will illustrate the point.

 10 INPUT "Type in the OLD name of the file you want to
 change >";LINE a$;"Now the NEW name >";LINE b$
 20 !""+a$ TO b$
 30 INPUT "Do you want to change any more ?";LINE a$:IF CODE
 a$=CODE "y" THEN GO TO 10
 40 STOP

 NOTE line 20- the empty quotes have the string variable
 added to them. Also note that no file descriptors are
 required at all.

 3.2 Changing the name of the disc

 You will not often have cause to change the name, but if you
 feel that the name does not adequately describe the content
 of the disc then you can change it to something more suitable
 using the command:

 !n"newname"

 3.3 Changing the PASSWORD
 You may want to remove the password, or if someone finds out
 what it is you may want to change it to prevent unauthorised
 use of your programs or data.
 The command for changing the password is:

 !i"newpassw"

 It is necessary to enter the old password before the command
 is executed, even if the password has already been entered,
 to prevent people from changing your password if you leave
 the computer un-attended for a short while after loading the
 program.
 The password also has to be input when a disc is
 re-formatted.

 !iCHR$ 0 will effectively remove the password, preventing
 the system from asking you for a password. The password can
 easily be re-installed if necessary.

4 NON MASKABLE INTERRUPT

 4.1 THE NMI
 Operating the NMI button will cause the entire contents of
 the Spectrum's memory to be dumped to disc, and then allow
 the program to continue execution from the exact point at
 which the button was pressed.
 If, after doing an NMI, you examine the directory, you will
 find that there is a BYTES file called 'nmi0' which can be
 loaded with the command LOAD "nmi0"CODE . If another NMI is
 made before the name of the file is changed from 'nmi0' then
 the new one will be called 'nmi1' until a maximum of 'nmi3'.
 After that the error report Nmi exists XX:Y will be given
 where XX is the line number and Y is the statement number
 that the program was busy executing when the NMI button was
 pressed.

 4.2 PIRACY
 It would be illegal in most countries to load a piece of
 software from tape and copy it to disc for your own use
 UNLESS you already owned the software OR you were checking
 the software for compatability with the disc system before
 purchasing the software. You should not have any problem with

 software houses objecting to you copying software, that
 you already own, to disc.
 Piracy occurs when you borrow a friend's tape and copy it,
 whether to disc, tape or even microdrive.

 * REMEMBER:- PIRACY DEGRADES SOFTWARE *

 NOTE: There will be certain programs where the NMI may not
 work correctly. You should always use a blank {freshly
 formatted} disc when trying to NMI a program for the first
 time in case the program causes the system to crash, which
 could possibly wipe out an entire disc. If the NMI is
 successful then you can do the NMI on the disc that you
 actually want it on. Backups should however not really be
 necessary as you should have the original on tape if it is a
 commercial program.

 HINT:- Remember to switch the DOS on after loading the tape,
 otherwise the NMI will probably have the same effect as
 resetting the computer.

5 RUN-ON
 5.1 Run-on time

 If you have been trying out the drive so far you will have
 noticed that, with the exception of the NMI, the drive
 carries on running for a short while after the disc access
 command (loading, saving etc.) has been completed.
 The reason for this is to speed up access to the disc by
 avoiding having to wait for the disc to startup if the disc
 has just been used, as the disc can take up to a second to
 start up if it has stopped. It has been found that disc
 accesses normally occur in bursts, with relatively long
 pauses between these bursts of activity.
 This means that if a disc operation occurs then it is likely
 that another one will occur soon. Therefore it makes sense to
 keep the drive running for a short time after it has been
 accessed. This is called the RUN-ON time.
 The run-on time is nominally set to 1,6 seconds. It can be
 adjusted to have values from one fiftieth of a second to as
 long as five seconds in steps of a fiftieth of a second.

 !t=n where 0 < n < 255 , so
 !t=200 will give a run-on time of 4 seconds

 NOTE !t=0 or !t=255 will cause the drive to run-on forever.

 5.2 RUN-ON on/off
 If you load a program with a machine code part which
 disables interrupts when it is running, (typically a game !)
 then the run-on timer would never mature and the drive would
 run-on forever, or until the interrupts are re-enabled.

 To see the effect of this, try the following little program.

 10 SAVE "runon test"LINE 20: STOP
 20 BEEP 10,0:GO TO 20

 RUN the above program, NEW or reset the computer and then
 load the program. The drive will continue running for quite a
 long time (much longer than the normal run-on time) or until
 you press BREAK. This is because the BEEP command disables
 interrupts for its entire duration.

 Now try the following:

 5 !ERASE "runon test"
 10 !r=1:SAVE "runon test"LINE 20: STOP
 20 BEEP 10,0:GO TO 20

 RUN the above program, NEW or reset the computer and then
 load the program. Now the drive will home to track 0 (the
 parking track) BEFORE the program starts.

 !r=0 will enable the run-on timer again.
 Normally the run-on should only be disabled when saving the
 last segment of a multi-part program.
 NOTE: Run-on is determined by a flag stored in the directory
 entry for each file, therefore you have to decide whether you
 want it on or off when SAVING the program, NOT when loading
 it. Changing the run-on flag before loading a program will
 have no effect whatsoever.

6 64 CHARACTER MODE
 6.1 There are 4 different possibilities in the 64 character
 mode:
 !6=0 for normal 32 character mode.
 !6=1 for main screen in 64 character mode.
 !6=2 for lower screen in 64 character mode.
 !6=3 for both parts of the screen in 64 character mode.

 NOTE that the lower screen has got problems in 64 character
 mode because of the way Sinclair handles the line editor.

 6.2 The UDGs will always be printed full size as there is no
 way the software can decide what shape should replace the 8*8
 matrix.

7 AUTO BOOT
 If there is a program call "run" on the disc, it will be
 loaded when the computer is powered up, after a reset or
 after NEW.
 This feature allows the system to be used by someone who
 does not even know how to LOAD a program as the entire

 operation can be menu driven.
 The name 'run' must be in lower case.

8 PEEKING AND POKING THE DISC
 8.1 Peeking the disc
 Individual bytes on the disc can be read by using the
 following function:

 LET a=!PEEK(sector,byte)

 This will give byte from the specified sector on the disc
 in the variable 'a'. Any other variable could be used instead
 of 'a', PRINT !PEEK(10,35) will print the value of byte 35 of
 sector 10.
 It is also possible to peek an entire string from the disc
 by using the function

 LET a$=!PEEK (sector,byte),length

 Which will give a string consisting of the bytes peeked from
 the disc starting at the byte specified by (sector,byte) and
 ending after the amount of bytes specified by the length have
 been loaded into the string.

 Note that the sectors start from 0 on track 0 through to 5
 times the number of tracks -1, i.e. a disc formatted to 40
 tracks numbers from 0 to 199. The value 'byte' can vary from
 0 to 1023 for the 1024 bytes on the sector. The maximum value
 of the length will depend on the amount of free memory
 available.

 You will notice that the drive only runs for the first byte
 of a particular sector as that sector is loaded into the
 buffer. The drive will only run again when a byte from
 another sector is requested, so if you are peeking one disc
 and wish to compare the same sector on a different disc then
 you will have to peek some other sector to force the system
 to read the sector off the new disc that you have inserted.

 8.2 Poking the disc
 With the following command any byte on the disc can be
 altered at will:

 !p sector,byte,value

 For the range of the sector and byte values see 8.1 . The
 value poked to the disc can be anything from 0 to 255.

 The numeric value to be poked can be replaced by a string or
 string variable so it is possible to poke an entire string to

 the disc with only one command.

 !p23,12,"hello" will store the string 'hello' on the
 disc starting at byte 12 of sector 23.

 WARNING - caution must be exercised when using this command as
 writing will not take place immediately but only when reading
 or writing to another sector. What actually happens is that
 the sector that you want to poke (write to) is loaded into
 buffer ram and the byte that you have specified will be
 changed BUT the sector will not be written back to the disc
 yet because it is most probable that you will want to change
 another byte on the same sector, so writing it back to the
 disc at this stage would merely be a waste of time.
 To force the system to write that sector back to the disc
 you must PEEK some other sector on the disc. Any other sector
 will do.

 Also DO NOT CHANGE THE DISC WHILE THERE IS AN ACTIVE POKE!!
 as this can cause the sector from the previous disc to be
 inadvertantly copied to the new disc with disasterous
 consequences. (Only if you haven't made regular backups !)

9 MOVING FILES
 The DOS allows files to be moved from the current disc to a
 specified disc or tape for backup purpose.
 The command has the following forms:

 a. !MOVE "filename" TO drive number

 where drive number = 0 to 7 for the discs and 8 for moving
 files to tape.
 e.g. !MOVE "name" TO 3 will move a file called 'name'
 from the current drive to drive 3

 b. !MOVE file number TO drive number
 Will move the file specified by its position in the
 directory to the specified drive.
 e.g. !MOVE 3 TO 8 will move the third file in the
 directory to tape.

 c. !MOVE 0 TO drive number

 will move all the files on the current drive to the
 specified drive. This is useful for making backups.

 e.g. !MOVE 0 TO 8 will copy all the files on the disc to
 tape.

 NOTE NMI files have specifically been excluded from the move
 command as the system would be unable to handle the length of
 NMI files. The system actually checks the length of the file
 before moving it, not the name, to determine if it is an NMI.

10 ERROR TRAPPING
 10.1 On Error Goto
 This command allows you to trap errors such as input errors
 etc. or numeric range errors with the utmost simplicity.
 The command has the form:

 !TO line number

 After this command the first error that occurs will cause
 the program to GO TO the specified line number.

 !TO 0

 will turn off the on error goto.

 10.2 On Error Gosub

 !^line number (the ^ is symbol shift H)

 This command is essentially the same as the !TO command
 except that the error handling routine must end in a RETURN
 because effectively a GOSUB has been executed.

 10.3 WHAT NUMBER ?
 To find out what error has occurred one can use !THEN as a
 function :

 PRINT !THEN will simply print out the error number -1
 But this is obviously not much use as you could see the error
 number on the screen anyway. LET a=!THEN is much more useful
 as it allows the PROGRAM to find out what the error was.

 10.4 Example

 5 DIM d(10)
 10 !TO 10: INPUT a: IF a<>0 THEN INPUT d(a): GO TO 10
 20 !TO 0

 The above use of the error trapping function avoids tedious
 range checking during the input statements. Note that the on
 error goto is disabled (or changed!) so that other errors
 don't end up going back to line 10.

11 TRACK TO TRACK STEPPING SPEED
 The track to track stepping speed of the DOS is controlled
 by the command - !s=speed where speed can take on the
 values 0 to 3 inclusive.
 When a disc is formatted it is given the slowest possible
 stepping speed (!s=0) and you do not have to change it, but
 if your drive is capable of handling the higher stepping
 rates it can give a significant improvement in loading times
 if you increase the stepping speed to the maximum that your

 drive can handle.

 !s=0 gives 30 milliseconds/step This information is
 !s=1 gives 20 milliseconds/step stored on the disc so
 !s=2 gives 12 milliseconds/step this command must be
 !s=3 gives 6 milliseconds/step used after FORMATTING.

 The manufacturers data should
 be consulted to get the correct stepping rate.

12 SCREEN SAVER

 If you have had the system running while reading through
 this booklet you will have noticed that the screen blanks out
 after 5 minutes of screen and keyboard inactivity.
 Pressing any key or printing any character will restore the
 display.
 The blanking can be disabled with the command

 !y=1

 and re-enabled with the command

 !y=0

13 POWERUP COLOURS
 The colours of the paper, ink and border can be set so
 that on power-up the Spectrum will power up with any colours
 that you would like to specify.

 !u=paper,ink,border will set the desired colours in the DOS
 system area of the directory so that when the computer is
 reset, powered up or NEWed the DOS will look up the colours
 if there is a disc in the lowest numbered drive and replace
 the standard paper=7,ink=0,border=7 colours of the Spectrum
 with the colours that you had specified using the !u=p,i,b
 command.
 Note that your specified colours can only be used if the
 system initialises with a disc in the drive.

14 INTERRUPT ROUTINES
 14.1 The Dos can be made to call a user's or a ROM routine 50
 times a second (every time an interrupt occurs) by executing
 the following command: !w=address

 where address is the start address of the machine code
 routine. The byte before the start address MUST be a machine
 code RET instruction, 201 in decimal notation for the !w
 command to operate. This a a safegaurd to prevent accidently
 jumping into undesired places in memory.

 !w=0 will turn off the interrupt calls.

 14.2 Restrictions

 To execute properly, the routine should complete execution
 within a 50th of a second, otherwise it will obviously not be
 called 50 times a second but at some slower rate.
 The registers that you do not have to preserve (because the
 DOS preserves them for you) are HL, DE, BC and AF. You must
 save all the other registers that you use.

 14.3 TYPICAL USES
 Typical uses are the running of background routines or
 setting up keyboard/screen/printer buffers to give real
 spooling capabilities.
 Scrolling windows could be set up and the scrolling would
 then take place while other BASIC routines were running.

15 MICRODRIVE COMMANDS

 15.1 Availability
 The microdrive commands for loading, saving and erasing
 program/files are only available if the interface one is NOT
 connected and if they are used from BASIC. It is quite
 improbable that these commands will be usable from machine
 code, unless the machine code uses the basic interpreter to
 execute them.

 15.2 The commands
 See section 2 for loading, saving, erasing and CAT
 operations.

 15.3 The use of the microdrive commands
 The reason these commands with their rather long-winded
 syntax, have been included in the command repetoire is that
 there are many programs (especially the more serious ones)
 which are available on tape that have a microdrive option. In
 many cases the tape option is written in machine code with
 many protection idiosynchroses which make use of the DOS
 difficult, but the microdrive operations are relatively
 straightforward and written in BASIC, allowing the program to
 run on the DOS with NO modification.

 15.4 Interface One variables
 Some of the programs designed for the microdrive poke the
 interface one variables area. If these variables are not
 present then the BASIC program could be corrupted,
 so the command !e is provided to insert the interface one's
 system variables. Normally one would use it to immediately
 after power up or initilisation, before loading the main
 program.
 There is no command to remove the interface one system
 variables, normally the easiest way is to reset the computer.

16 PRINTER INTERFACE
 16.1 LLIST

 The command LLIST will send a listing to the printer port,
 with full de-tokenisation taking place. The UDGs and graphic
 characters will be replaced by '?' whenever they occur.

 16.2 MARGIN
 If the listing is too wide then set the margin using the
 following command:
 !m=width where the width can vary from 0 to 255.
 With a width of 0, there is no right margin and only
 explicit carriage return/linefeed codes will be sent to the
 printer. With all other permissable values a CR/lf
 combination will be sent after the number of characters
 specified by width have been sent to the printer. The DOS
 initialises with the margin = 0.

 16.3 LPRINT
 Using the LPRINT command, characters can be sent to the
 printer for printing as with any other printer interface.
 Again graphics codes and UDGs are replaced by question marks.

 16.4 Control Characters
 To send control characters to the printer there are 2
 avenues open to you:

 a. Precede every character that has a code less than 32 or
 greater than 127 by CHR$ 27; . This even applies to CHR$ 27.

 b. TRANSPARENT MODE
 The interface can be switched to transparent mode by using
 the command !q=1 . When in transparent mode none of the
 characters sent to the printer is translated/absorbed in any
 way. It is a good idea to use transparent mode with
 TASWORD_2. This mode can be turned off using the command
 !q=0 which will restore full de-tokenisation etc.

 16.5 ABORT
 If at any stage you wish to abort printing, but do not want
 to BREAK into the program, just hold down the SPACE key on
 the keyboard. This will cause the printer routine to just
 throw away all the characters that are sent to the printer.
 Break can be pressed at any time while printing, it will
 cause a normal BREAK error report to occur.

 16.6 COPY
 When the copy command is executed a search will be made on
 the current disc for a CODE file called 'UTC' and this file
 will be loaded to the hex address 3880. The first byte of the
 file should be a 3 to identify it and the machine code proper
 should start execution from 3881 hex. The length of the block
 of code should not exceed 0380 hex. If it is necessary to
 call Sinclair ROM routines, it can be done by doing a
 RST 0010 followed by the 16 bit address of the routine that
 you wish to call, low byte first. The ROM will be called with
 all the registers intact, even the flags register, and when a

 return is made to your routine, only the registers that have
 been changed by the ROM routine will have been altered. Thus
 the 'CALL' to the ROM is totally transparent. For instance if
 you wanted to print a character using the ROM routine at
 address 0010 normally done by

 LD A,02 ; select main screen
 CALL 1601 ; the chans subroutine in the ROM
 LD A,CHAR ; the character that you want to print
 RST 10 ; print the character

 will have to be replaced by

 LD A,02 ; select main screen
 RST 10 ; call ROM routine, chans.
 DEFB 01 ; low address of chans
 DEFB 16 ; high address of chans
 LD A,CHAR ; the character to be printed
 RST 10 ; calls the ROM routine
 DEFB 10 ; low byte of rom routine
 DEFB 00 ; high byte of rom routine

 The machine code routine should end in an ordinary RET
 statement as the stack has been set up to return correctly to
 continue execution of the BASIC program.
 A routine to handle certain types of printer can be
 supplied.

16.7 TASWORD TWO
 The interface control codes for Tasword 2 are
 0, 0, 0, 2548.
 Carriage return = 13
 Linefeed = 10
 Margin = to taste....

 Transparent mode should be selected by editing line 20 to
 include the command !q=1 .
 When all of these changes have been made your customised
 version of TASWORD can be saved onto disc.

16.8 USING +80 SOFTWARE AND TASPRINT

 The software that is shown here can be used for many of the
 other programs that require specialised printer drivers.

 a. INITIALISE THE INTERFACE FOR TRANSPARENT MODE

 CD 80 02 CALL 0280 ;page the DOS in
 3E 10 LD A,10 ;set bit 4 of A
 32 E4 3B LD (3BE4),A ;set bit 4 of PRINTFLAGS
 ;for transparent mode
 C3 16 00 JP 0016 ;RET via DOS page out address
 This routine is 11 bytes long.

 b. CHECK FOR PRINTER BUSY

 CD 80 02 CALL 0280h ;page DOS in
 3A 04 20 LD A,(2004h) ;get BUSY line
 2F CPL ;invert line
 CB 6F BIT 5,A ;Z = not busy, NZ = busy
 C3 16 00 JP 0016h ;RET via DOS exit
 This routine is 12 bytes long

 c. OUTPUT A CHARACTER

 FD 46 01 LD B,(IY +01) ;preserve FLAGS in BC
 C5 PUSH BC ;save BC
 FD CB 01 CE SET 1,(IY +01) ;select PRINTER
 CD F4 09 CALL 09F4 ;call PRINT routine
 C1 POP BC ;Get BC back
 FD 70 01 LD (IY +01),B ;restore FLAGS
 C9 RET ;return to calling routine
 This routine is 16 bytes long

 The above code should be poked into the or installed into
 the program in the way the supplier recommends. Normally one
 would select the interface type 'OTHER' when asked by the
 customisation program

17. ACCESSING THE SYSTEM FROM MACHINE CODE
17.1 The DOS can be paged in from machine code by a call to
 0280h and paged out by calling 0016h.

17.2 The System variables are listed below. They can be
 accessed from machine code by FIRST paging in the DOS and
 then reading the appropriate address. The DOS should always
 be paged out before RETurning to BASIC.

 NAME L ADDR DESCRIPTION
--
 TEMP_1 2 3000 Tempory register storage while calling
 TEMP_2 2 3002 SINCLAIR ROM routines.

 TIMER 1 3004 The RUN-ON timer, is 00 when disc is
 off and FF when disc is busy being
 'HOMED' to track 0.

 PORT 1 3005 Copy of the OUTPUT port.

 CER 1 3006 Counts the number of retries made
 during LOADing.

 VF 1 3007 The 'VERIFY' flag, bit 0 set to
 indicate that a block is being
 verified and equals FF if there was a
 verify error.

 SECNO 1 3008 Sector number

 ERRL 2 3009 Contains the line to GOTO if an error
 occurs or if bit 7 of 300A is set then
 an GOSUB takes place instead of a
 GOTO. After 'on error' action has
 occurred 3009 contains the error
 number and 300A contains FFh.

 PFL1 1 300B Bit 0 = 0 -- Main screen = 32 col
 Bit 0 = 1 -- Main screen = 64 col
 Bit 1 = 0 -- Lower screen = 32 col
 Bit 1 = 1 -- Lower screen = 64 col
 Bit 5 = set if AT detected as print
 item
 Bit 6 = set to indicate that 2
 parameters follow.
 Bit 7 = set to indicate that 1
 parameter is still expected.

 PFL2 1 300C AA or 55 depending on which half-cell
 the character is to be printed.

 PFL3 1 300D As above but for lower screen

 DS 2 300E Address to which a sector is loaded

 BT 2 3010 Number of bytes loaded out of a sector

 CR 2 3012 The bit set = the current drive number
 e.g. bit 2 set means that drive 2 is
 the current drive.

18 DISC INTERFACE CONNECTIONS

18.1 All odd-numbered connections (underside of the connector on
 the drive are connected to ground {0v})

18.2 The locating slot on the drive's connector is between
 connecotr blades 2 and 4

18.3 Layout of connector:
 gnd 1 + 2 --
 gnd 3 + 4 --
 gnd 5 + 6 sel 3
 gnd 7 + 8 index
 gnd 9 + 10 sel 0
 gnd 11 + 12 sel 1
 gnd 13 + 14 sel 2
 gnd 15 + 16 motor on
 gnd 17 + 18 direction

 gnd 19 + 20 step
 gnd 21 + 22 write data
 gnd 23 + 24 write gate
 gnd 25 + 26 track 0
 gnd 27 + 28 write protect
 gnd 29 + 30 read data
 gnd 31 + 32 side select
 gnd 33 + 34 ---------------

19. LOADING FROM MACHINE CODE

 ORG A000 ;set the origin to any desired
 ;point in memory
START LD IX,HEADER_2 ;point to where header must go
 LD DE,0011 ;length of all headers
 LD A,00 ;specify 'header'
 SCF ;
 CALL 0556 ;the specified header (if !f=1) or
 ;the next header (if !f=0) will now
 ;be loaded. If !f=0 is in use (this
 ;is the default) then the user must
 ;provide his own compare routine
 ;and loop back to 'START' until a
 ;match is found.
 ;
BODY LD IX,DESTINATION ;can be specified or derived from
 ;loaded header
 LD DE,LENGTH ;can be specified or derived from
 ;loaded header
 LD A,FF ;load a block of code
 SCF ;
 CALL 0556 ;call load subroutine
 ;
 RET ;return to calling program
 ;
 ;
 ;
HEADER_1 00 ;these are two consecutive header
 "NAMEOFPROG" ;areas, the first area contains the
 00 00 ;name of the file wanted and the
 00 00 ;second will contain the name of
 00 00 ;the file marked for loading by the
 ;subroutine 'BODY'. If the DOS
HEADER_2 00 ;search flag has been set by the
 "nameofprog" ;DOS command !f=1 (it only needs to
 00 00 ;be done once after a disc has been
 00 00 ;formatted) then the file name and
 00 00 ;type will be found by the DOS or
 ;if it is not in the specified
 ;directory the a 'file not found'
 ;error will be given.
 ;

 ;Note that the header is made up in
 ;the same way that tape headers are
 ;and the bytes have the same
 ;meanings as for tape.
 ;e.g. byte 0 in the header defines
 ;the type of file, 0=program
 ; 1=data
 ; 2=data string
 ; 3=bytes

 SAVING FROM MACHINE CODE

SAVE LD IX,HEADER_1 ;The name of the program to be
 ;saved should be provided in the
 ;header area. The header should be
 ;set up exactly as for tape use.
 ;
 LD DE,11 ;The length of the header
 LD A,0 ;Specify that a header is being
 ;saved
 PUSH IX ;save the pointer
 CALL 04C2 ;call the save subroutine
 ;
 POP IX ;restore pointer to header
 LD E,(IX 0B) ;get length from header
 LD D,(IX 0C) ;
 LD C,(IX 0D) ;get start address of block
 LD B,(IX 0E) ;
 PUSH BC ;copy start of block to IX
 POP IX ;
 ;
 CALL 04C2 ;call save subroutine
 ;
 RET ;return to calling program
 ;
 ;

Typically any program which uses the STANDARD Sinclair header
system and calls the standard Sinclair entry points (04C2h for
save and 0556h for load) will work with the DOS.

21. HEADER DECODER

Also to examine the directory entries virtually any 'header
decoder' can be used. An example of one is given here.

 10 CLEAR 32511
 20 FOR a=32512 TO 32521: READ b: POKE a,b: NEXT a
 30 DATA 175,55,221,33,16+17,127,205,86,5,201

 40 LET b=32528+17: DEF FN a(x)=PEEK (b+x)+256*PEEK (b+x+1)
 45 POKE b-16,255
 50 RANDOMIZE USR 32512
 60 LET c=PEEK b
 70 IF c>3 THEN GO TO 50
 80 PRINT "Filename: ";
 90 FOR a=b+1 TO b+10: PRINT CHR$ PEEK a;: NEXT a
 100 PRINT : PRINT TAB 4;"Type: ";
 110 GO SUB 1000+100*c
 120 PRINT : PRINT
 125 POKE b,255
 126 PAUSE 0
 130 GO TO 50
1000 PRINT "Program"
1010 PRINT "Total length: ";FN a(11);" bytes"
1020 PRINT "Program length: ";FN a(15);" bytes"
1030 IF FN a(13)>9999 THEN PRINT "Load only": RETURN
1040 PRINT "Runs from line ";FN a(13)
1050 RETURN
1100 PRINT "number array"
1110 LET a$="": GO TO 1220
1200 PRINT "character array"
1210 LET a$="$"
1220 PRINT "Array length: ";FN a(11);" bytes"
1230 LET d=PEEK (b+14)
1240 PRINT "Original array name: ";CHR$ (64+32*(d/32-INT
(d/32)));a$
1250 RETURN
1300 IF FN a(11)=6912 AND FN a(13)=16384 THEN PRINT "screen
image": RETURN
1310 PRINT "bytes"
1320 PRINT "Start address: ";FN a(13)
1330 PRINT "Length: ";FN a(11);" bytes"
1340 RETURN

21. ALTERNATE DIRECTORIES

 If directory space becomes a limitation, more than one
 directory can be created.

 This can only normally be done on a disc that has just been
 formatted with nothing SAVEd on it.

 The procedure is as follows:

 1) Reset computer
 2) Format disc
 3) Save block of code with length = 1024 * number of extra
 directories needed

 e.g. SAVE "dirfile"CODE 40000,4096
 will give enough space for 4 extra directories.

 4) !p5,5,<directory desired>:IF !PEEK(6,0) THEN

 e.g. !p5,5,2: IF !PEEK(6,0) THEN
 will give the third directory

 Note: The current directory selection will be stored on disc
 so that to access the base directory you will have to give
 the command:
 !p5,5,0:IF !PEEK(6,0) THEN
 to get back to the base directory.

22. CONNECTOR LAYOUT

 ...
 . .
 . O .
 . NMI BUTTON .
26. :: P D .
 . :: R I :: . 1
 . :: I S :: .
 . :: N C :: .
 . :: T D :: .
 . :: E :: .
 . :: R D :: .
1 . :: R :: .
 I :: .
 . V :: .
 . EXPANSION CONNECTOR E :: .
 . ============================== ==== S :: .34
 ..

This is a rough illustration of the connections to the DOS as
seen from the back. Note that it is not to scale.
On most of the drives and printers the marking stripe on the
ribbon cable will go to the pin 1 side of the connector

23. GREY-SCALE SCREEN DUMP
 Just as the normal screen dump routine is contained in a
 file called UTC on the disc, a grey-scale dump routine is
 presented as a UTG file. This routine can only be
 effectively used with printers that use 8 needle printing.
 To allow maximum flexibility, the printer control bytes can
 be edited using the following instructions. An example will
 be given for the MANNESMAN TALLY MT140 as an illustration.

 To customise UTG:

 1 CLEAR 32767
 2 LOAD "UTG"CODE 32768

 To set up the size of the linefeed so that the graphics do
 not overlap or leave big gaps between lines, the linfeed
 should be adjusted to 8/72 of an inch (normal needle spacing
 is 1/72 of an inch). If thin white lines appear in the
 screen copy then change this to 7/72 of an inch.

 MT140
 3 POKE 32771,number of bytes to
 initialise printer to graphics line POKE 32771,0
 feed size. The maximum number that
 can be sent is 5 and the minimum is
 0. The printer manual should be
 consulted about this.

 4 POKE 32772 to 32776 with the NONE USED FOR
 bytes to set the printer to THE MT140
 graphics line feed size

 5 POKE 32777,1 for carriage return POKE 32777,2
 only 2 for carriage return +
 linefeed

 6 POKE 32780,number of bytes to POKE 32780,5
 send 704 bytes to printer max = 8

 7 POKE 32781 to 32788 with the POKE 32781,27
 bytes that will put the printer POKE 32782,76
 into grapics mode for 704 bytes POKE 32783,192
 (double density) POKE 32784,2
 POKE 32785,0

 8 POKE 32789,number of bytes to
 POKE 32789,0 restore the printer to
 normal the MT140 will printing max
 = 5 automatically go back to the 9
 POKE 32790 to 32794 with the normal
 line bytes to restore printer to
 normal spacing mode

 10 POKE 32795,31 if bit 0 = bottom POKE 32795,31
 needle on printhead 23 if bit 0 =
 top needle on printhead

 11 If you would like to have this
 program as your normal copy program
 all you have to do is POKE 32768,3

 12 SAVE "UTG"CODE 32768,256 (if
 23768 was poked With '3' then SAVE
 "UTC"CODE 32768,256

 13 To make a greyscale screen copy,
 type COPY g<ENTER> or if saved as
 UTC then just type COPY<enter>

